If it's not what You are looking for type in the equation solver your own equation and let us solve it.
23y+7y^2=20
We move all terms to the left:
23y+7y^2-(20)=0
a = 7; b = 23; c = -20;
Δ = b2-4ac
Δ = 232-4·7·(-20)
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-33}{2*7}=\frac{-56}{14} =-4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+33}{2*7}=\frac{10}{14} =5/7 $
| 3|n|-2(2|n|-2)=9 | | 3/5x+6x=3/2x-12 | | -12x+1=3x-8 | | 3x-1+25x^2=0 | | 5p+10=-4p-8 | | 2(7+3k)=9+5k | | 5y-7+3y=8y-7 | | b/4+7=2 | | 7x+5=37-1x | | (14x-11)=40x-2(2x-5) | | 74+4y=2(5y+4)+2(2y+8) | | 6(x+1)-1=5x+4 | | Y=k64 | | w=3+13/16 | | 8.13x+0.32=3.76-3.23 | | -61/4w=-4 | | (x+7)/4x+1=(x+5)/x | | -4(t-4)+9t=8t-9 | | 8.12x+0.33=3.76x-3.23 | | 17-7x=5(7x-5) | | 3.8x+58.4=18.8-9.4x | | 4(1/3+x)=5 | | 9x-5(13)=13 | | 5(7x^2-12x-4)=0 | | 2x+17/3=-5 | | -7=-c/6+12 | | 2.21x2.45x-2.536=5.223 | | 2s^2+10s-133=0 | | 9x-(5x-9)=29 | | 97-(7x+16)=7(x+3)+x | | -5u/9=-10 | | x2−2x+1=0 |